Зацени!

 

3.9, голосов: 378

Поделись!

Отвлекись!

Интернет-классАлгебраСтепени и корни

Понятие корня степени N. Понятие арифметического корня степени N. Понятие степени с рациональным показателем.

Понятие корня степени N

Корнем степени n из действительного числа a, где n - натуральное число, называется такое действительное число x, n-ая степень которого равна a.

Корень степени n из числа a обозначается символом . Согласно этому определению .

Нахождение корня n-ой степени из числа a называется извлечением корня. Число а называется подкоренным числом (выражением), n - показателем корня. При нечетном n существует корень n-ой степени для любого действительного числа a. При четном n существует корень n-ой степени только для неотрицательного числа a. Чтобы устранить двузначность корня n-ой степени из числа a, вводится понятие арифметического корня n-ой степени из числа a.

Понятие арифметического корня степени N

Если и n - натуральное число, большее 1, то существует, и только одно, неотрицательное число х, такое, что выполняется равенство . Это число х называется арифметическим корнем n-й степени из неотрицательного числа а и обозначается . Число а называется подкоренным числом, n - показателем корня.

Итак, согласно определению запись , где , означает, во-первых, что и, во-вторых, что , т.е. .

Поятие степени с рациональным показателем

Степень с натуральным показателем: пусть а - действительное число, а n - натуральное число, большее единицы, n-й степенью числа а называют произведение n множителей, каждый из которых равен а, т.е. . Число а - основание степени, n - показатель степени. Степень с нулевым показателем: полагают по определению, если , то . Нулевая степень числа 0 не имеет смысла. Степень с отрицательным целым показателем: полагают по определению, если и n - натуральное число, то . Степень с дробным показателем: полагают по определению, если и n - натуральное число, m - целое число, то .

См. также Свойства степеней

См. также Таблица степеней